Heidegger and The Philosophy of Science – Lecture 7

January 28, 2016

Martin HeideggerWe have thought about science as being different from religion. Science has to do with facts, and religion with beliefs. Increasingly, as we have gone through the different views of what science might be, this simple opposition has become less and less believable. For a start off, it is not at all clear that science has to do with facts, if we mean by that that facts are simply lying around for a scientist to construct a theory from. On the contrary, facts are theory dependent. What is taken to be a relevant fact is given by a scientific theory, and this theory cannot be justified by appeal to them alone otherwise we would be lost in a circular argument. Is it possible then to define science simply by theories alone without recourse to facts outside of them? Popper certainly attempts to do so through this principle of falsifiability in his initial starting point. What makes a theory scientific as opposed to non-scientific, and thus what distinguishes science from religion, is that it can be falsified whereas non scientific theories cannot. But when we examine the falsifiability theory in detail, it is very difficult to show, in concrete terms, how they are falsified. Rather than anomalies causing scientific theories to collapse, they seem quite happily to carry on regardless, and because scientific theories are so complex, it is difficult to discern which hypothesis has to be falsified in order for the theory itself as whole to be so. In other words, the fact problem still rears its end, but now at the point of falsification rather than at the point of the construction of a theory. Because of these problems, philosophers of science like Kuhn will argue that we shouldn’t be arguing about science as such, or the ideal nature of science, but investigating what scientists themselves do. What we find then is not a smooth progress of science from one theory to the next getting ever nearer to the truth, but a discontinuous series of revolutions that he called ‘paradigms’.

Although we can speak of different paradigms, surely it is the same reality that is beneath them all? The question of reality is particularly pressing in science because the basis of modern scientific theories, since Galileo and Newton, is unobservable phenomena. If science of the 16th and 17 century posited nature as made of tiny particles of matter in motion of which all that we observed we its effects, this did not mean that anyone could see such corpuscles. How then did we now that such a theory was real? The whole of Descartes philosophy was to answer this question, and his answer, which not many philosophers after him were satisfied, was that it was God’s justice than ensured that what our theories said was real was in fact what reality was, even though we could not see it. The whole debate between realists and anti-realists in the philosophy of science is whether we can commit to such a reality or not without God or any other transcendent guarantee (or indeed whether it matters or not, whether it can be proved to be real).

At the end of the discussion of realism and anti-realism, I introduced the philosophy of Heidegger. Many will argue that he does not have a philosophy of science, but I don’t think that is right at all. Indeed, one could say that the whole of his philosophy is a sustained debate with science (Glazebrook 2000). For Heidegger, science is a restricted not a full account of experience. We take science to be describing the way that things are, but for Heidegger, it is only a certain way of approaching things, and not necessarily the truest. In Being and Time, he distinguishes between the present-to-hand, and the ready-to-hand (Heidegger 1962). Science, which has its roots in a certain metaphysics, relates to things as present-to-hand, but this is not how we relate to the world that is nearest to us. Our fundamental relation to things is ready-to-hand. We use them. We open the door to enter the room, we enter the room and sit at the chair, we place the books on the table, we look at the screen on which a picture has been projected, or we look at the words written on the board, or down at the book in our hands, and so on. What we do not look at, is little particles of matter, or atoms. Why, Heidegger, would we take this world not to be real, and the scientific world to be more real?

When we related to things as ready-to-hand, as opposed to present-to-hand, then it is clear to us that these things relate to our world. The world is the context is which making use of things makes sense (there is the world of the classroom, and this world is part of bigger world in which something like a classroom makes sense). This world is not a thing. It is not a container in which something is enclosed (like water in a glass, to use Heidegger’s example). Rather, it names the cultural context or background in which something like sitting in classrooms and listening to lecture’s makes sense. Even the activity of science itself, with its abstract picture of things, is not possible without this world, since science is something that human beings do, and can only occur where this activity already has a meaning.

In section 3 of Being and Time, ‘The Ontological Priority of the Question of Being’, Heidegger speaks explicitly about science. He says that every science has its own area of things that it studies. Thus physics studies matter, chemistry, elements, and biology, life, and so on. Yet for any of these sciences to function, they have to take for granted that the things they study actually exist. Thus, Heidegger says they all presuppose a understanding of being that they do not question. The physicist accepts that matter exists, the chemist, elements, the biologist, life. If they did question the existence of these things, then they could not actual do science at all, because they would come to a stop at the threshold of the investigation and never get any further. If I don’t accept that these things exist, then how could I do physics, chemistry or biology? What Heidegger here calls a ‘regional ontology’ is similar to what Kuhn calls a paradigm, the ‘ontical questioning of positive science’ to normal science. It is only when a science goes into a crisis does the ontology that it presupposes come into question. This is when, again in Kuhn’s vocabulary, does the existence of the very fundamental nature of the objects of a science become doubtful and only at this point does science have to turn to philosophy for its answer.

What philosophy discovers is that science is a projection onto nature. This does not mean that nature does not exist for Heidegger (if human beings ceased to exist, there would be still planets, but there would not be Newton’s laws of motion). What modern science projects onto nature is mathematics. Nature is only what can be described mathematically. Galileo and Newton onwards, this is understood in terms of efficient causality rather than final causality. For Aristotle, nature is defined teleologically. Nature has a purpose, goal and direction, whereas in modern science it does not. This is why for Heidegger technology is the essence of modern science, because it means, through its mathematical projection, nature is totally subsumed to human purpose. Because nature has no purpose or value in itself, its only value is for the sake of us. It becomes, to use Heidegger’s phrase, a ‘standing reserve’. The big difference between Kuhn and Heidegger, is though both understand science historically, Heidegger does not think that the image of nature in Newton and Galileo is that fundamentally different from that in quantum physics. Though they are a different mathematics, nonetheless both view nature mathematically. The fundamental split them is between final causality of Aristotle and the efficient causality of modern science that culminates in technology.

For Heidegger, the basis of mathematical projection of science is the experiment. It is therefore a fundamental misunderstanding of science that it simply experiences things as they are and then comes up with a picture of the world (a picture which is meant to be what things really are). On the contrary, through the experiment, the scientist already interprets experience mathematically. It is the mathematical model that gives meaning to the experience and not experience meaning to the mathematical model. This again is the big difference between Aristotelian and modern science. For Aristotle, science is based on experience, for modern science it is not. Mathematics is first, not experience, but we still speak about science as though it was about experience, and somehow the things that we directly experience around us were the diminished and restrictive one, and not science. As though we were living in the abstract world and the mathematical projection of science were the full blooded one.

That meaning is the subject of science is what the history of science teaches us. We see that the world of Aristotle, Newton and Einstein, is not one and the same world a series of ruptures, breaks and discontinuities. Although the reference of these theories is one and the same, the meaning of the reality they refer to is not. What mass means in Newton, therefore, is not the same as what it means in Einstein. To use Kuhn’s word these worlds are incommensurable, since there is not a perfect translation between one and the other. You will only think that objectivity is threatened by this picture, if you believe in a metaphysical reality that is beyond human experience but which at the same time we can know. Reality is not outside of us, it is something that we construct through our institutions and discourses. The difference between astrology and astronomy is not in terms of a method, as Popper might have us believe, that one is tested by facts and the other is not, since when we investigate the history of science, we see that a theory will ignore those facts that do not fit its paradigm, but it does not have the virtues or practice of objectivity. The problem with astrology is that it explains too much and not too little. Truth, if we might put it this way, is a practice, a way of being, rather than a mirror to a reality that stands outside of us eternally the same. It is the creation of concepts to problems that are forever changing, and it is through problems that we grasp reality.

Rather than grand narratives, the study of the history of science concerns the details. What scientists say and do. For this reason we cannot impose an image of science on its own reality. What we discover is that reality is not identical through time but constructed from different aspects that are only relatively stable and which can always dissolve into a new regularity that might take elements from the previous paradigm but would transform their meaning by placing them in different relationships. It is not reality which explains how science changes, but the changes in science that explain reality, just as it is not the chair that defines sitting, but sitting the chair. The correct question is therefore not what reality is, but how do we understand and interpret reality. What changed in the nature of scientific experimentation such that reality was perceived in a different way? What changes is not reality, but how we perceive and understand, and what changes this perception is the practice of science itself, its discrete methods and discourse that would be only visible to us through historical investigation. The subject of such a history is what scientists do. We reject the idea of hidden telos, as though all scientific activity were heading in the same direction that reveals a reality that had already been there from the beginning but simply unknown by us. Science is made up of actions of scientists and nothing more. The meaning of reality does not belong to some intrinsic definition but to a practice that leads to a certain and definite objectivity over a period of time, but which can subsequently dissolve as a new objectivity emerges. Reality is only a correlate of a practice and only has a meaning as such in relation to it. We can therefore distinguish between the practice of science and non-science, but there is no absolute ahistorical meaning of science, and still less a reality that is eternal and unchanging. Science is not about reality per se, but problems.

What Heidegger calls ‘projection’ Feyerabend calls a ‘belief’ (Feyerabend, 2010, 10). We think that science is just an explanation of what common sense already knows. But the opposite is the case. Science, since Galileo, moves in in another direction than common sense. It is by moving in the opposite direction to ‘contemporary reason’, that the new science develops new instruments and new experiments. If it had not done so, if it stuck by the old rules and methods, it would not have developed such a new way of looking at and understanding reality. It is only subsequent to the emergent of the new beliefs that evidence can be found to support them. We tend to think the opposite. That the new beliefs emerged because the evidence demonstrated their truth, but the opposite is the case: it is the new beliefs that made the evidence even visible. This is why subsequently we can say that ‘Galileo was on the right track’, because now there is enough evidence to support the theory, but if we had waited for the evidence before hand, the theory would never have got off the ground. As Feyerabend continues:

Theories become clear and ‘reasonable’ only after incoherent parts of them have been used for a long time. Such unreasonable, nonsensical, unmethodical foreplay thus turns out to be an unavoidable precondition of clarity and of empirical success. (1993, 11).

Works Cited

Feyerabend, P., 1993. Against method. Verso, London; New York.

Glazebrook, T., 2000. Heidegger’s philosophy of science. Fordham University Press, New York.

Heidegger, M., 1962. Being and Time. Wiley-Blackwell, Oxford.


Realism and Anti-Realism in Philosophy of Science –Lecture 6

January 24, 2016

higgs-simulation-3In a previous lecture we looked at Kuhn’s idea of history of science as broken by different paradigms that are incommensurable. Aristotelianism, Newtonianism, and Einsteinism, mark revolutions in the history of science rather than a smooth flow of one epoch into another which will some day reach an ultimate Truth when we can all stop doing science because what our theories say and what is are exactly the same and there will be no exceptions. What Kuhn reminds us is that when we think about what science is, rather than taking the philosopher of science’s word for it, we should examine what scientists do. We will find that the philosophical version does not much look like the real history of science, rather they are idealisations in both sense of the word: an abstraction and a kind of wish fulfilment. Kuhn is not sceptical of science as such, but the philosophy of science. His book, The Structure of Scientific Revolutions, marks the death knell of a particular kind of philosophical history of science, so that it can be replaced by the proper history of science, whose object is what scientists actually do, rather than what philosophers think they might do. In other words, the new object of this history of science is ‘normal science’, in all its messiness and vagueness, rather than an idealised science that has never existed except in the minds of philosophers like Ayer or Popper.

At this point, however, we are going to make a little detour back to philosophy, and that is to the question which should have been bugging us from the very beginning, which is what exactly is science about, rather than what is the history of science. Early on we characterised the difference between religion and science as the difference between belief and facts. We said that science is about reality, that it makes true description of real things that happen in the world. In a word, it is objective. On the contrary, religion is subjective. It does not give us a true picture of the world, but offers us a moral compass through which we can live our lives. To confuse religion with science is to undermine the importance of religion rather than to give it more intellectual support. There is no conflict between science and religion, because they are completely different discourses. One tells you what something is, the other how you ought to live your life.[1]

But what do mean when we say that science is about reality? Aren’t we being a little simplistic when we do that? What is reality after all? Everyone knows the old paradox of whether a tree that falls down in a forest makes a sound or not if no one is there to hear it. Is reality what we perceive or is it more than that? I would say that it would be absurd to say that there would not be trees, stones or stars if there were no human beings. As though human beings were to vanish the universe would vanish with them. The universe does not have any meaning, however, except for the fact that it means something for some being or other in the universe. A stone is not a stone for a stone. It is only a stone for human beings who understand what it is to be a stone. We’ll come back to this at the end of the lecture.

Both Chalmers , Okasha, and Ladyman (perhaps because they all belong to what can be loosely called the analytic tradition) seem very reluctant to address these questions head on (as though they were too philosophical and could be avoided. I would say that it is their hidden philosophical assumptions which allow them to avoid these questions).[2] For them, on the contrary, the important distinction is between realism and anti-realism, rather than whether reality exists out there as such and what we might mean by reality as a whole. Chalmers simply dismisses the idea that reality being formed by language (what he calls global anti-realism), through a Tarskian theory of truth, which begs the questions, because such a theory already has a commitment to a certain view of language, and a certain view of reality, which remains unquestioned by Chalmers himself. Investigating this presupposition, however, would take us too far from the subject of this lecture itself.

What then is anti-realism and realism in science? First of all it is important to note that both theories accept the reality of the world. So it is important not to confuse either with a thorough going scepticism. The difference between them has to do with the status of scientific theories, on the one hand, and observable phenomenon on the other. A strong realist would argue that both observable phenomenon and theories are true descriptions of the world out there, whereas an strong anti-realist would say that only observable phenomenon are true, and theories are neither true of false. All these authors, as far as I can see, occupy a position between these two extremes.

The common sense view, I suppose, would take it that both theories and observable phenomenon are true, so we are going to approach this question from this point of view. None of us would think that observable phenomenon are not real, that when I see a donkey there isn’t a donkey out there (again I am not so sure that both Okasha and Chalmers skip over this supposed reality far too quickly, but let us leave them to have that truth for now). What isn’t so certain is that theories really point to something out there. This is because much of the basis of a scientific theories actually point to phenomenon that we cannot observe. If we cannot see something, then how can we say that it is part of the world? From what vantage point would we say that it is real? Of course, as Okasha points out, many sciences do have as their basis observable phenomenon, such as palaeontology whose objects are fossils, but modern physics does not (Okasha, 2002: 59). We cannot literally see inside of the atom. We only have theoretical pictures of what they look like, and we do not know if at that level the universe really looks like that at all.

The anti-realist is not saying that there is no difference between science and someone who thinks that the earth is balance on the back of a turtle. Rather theories only give us structures or the scaffolding in which we can observe phenomena through experimentation, but it is only this literally observable phenomenon which we can take to be true. The theory itself we cannot prove is real or not, because there is nothing there to see which we could demonstrate as real or not. The history of science itself seems to bear this out, because there have been false theories that have actually brought out true observable phenomena, so there does not seem to be an analogy between the truth of a theory and the truth of observable phenomena. The example that Chalmers gives is the history of optics, which is littered with what we now understand to be false theories of light, and yet which provided correct observable phenomena. Thus Newton believed that light was made up of particles, then Fresnel believed that light was a wave in a medium called ether, then Maxwell, believed that light waves were fluctuating electric and magnetic fields in ether, then in 20th century we got rid of the ether and the waves were entities in their own right, then finally the wave theory of light was supplemented by the particle theory of photons.

It seems to go against common sense, however, to say that theories are just fictions on which we hang our experimental results. When we look at the history of atomic theory it does appear that we are getting a progressive understanding of the structure of atom, and it would seem entirely bizarre that the theory would predict what we ought to see, and at the same time being entirely false. One way of getting around this is by arguing that the anti-realist is making a false distinction between what is observable and what is not observable, since though we cannot see inside the atom, we can detect the existence of atoms by ionisation when they are passed through a cloud chamber. The strict anti-realist, however would say that, all we know is real is the trails themselves, and we cannot not know whether the atoms are real or not, just as we should confuse the trail that a plane leaves in the sky with the plane itself. In other words, we have to make a distinction between direction observation and detection.

The fundamental issue here is whether we can make a complete separation between theories, on the one side, and facts on the other. This is the real issue, rather than whether facts are observable and theories not. In fact it is the anti-realist and not the realist who is committed to the separation. Both Okasha and Chalmers, though in different ways, would criticise this separation. Chalmers returns to whether the history of philosophy really does prove that theories which were once taken as true are shown to be false by the next one, and so on infinitum, so that we can never know whether are theories give us an accurate view of the world, by arguing that each new theory takes up some aspect of the previous one which gives us a more and more accurate picture of the phenomenon we are attempting to understand. Thus a true theory (unlike the turtle theory) captures some aspect of the truth of the world, if only a partial one, which is then improved by the subsequent one (does this conflict with the Kuhnian view of science, since it implies an accumulative image of science?). Okasha, on the other hand, will claim that the problems that the anti-realist claims would undermine the possibility of claiming theories to be true, could also rebound against what we would think were observable phenomena, and thus would destroy the basis of all science altogether, since we could only claim to know what we could see now in this moment, and not past events, since again they are only known by detection rather than direct observation (this would be mean that the anti-realist argument would be like Hume’s problem of induction).

As I said at the beginning, I find both Okasha’s and Chalmers discussion of realism unsatisfactory and indeed both of their chapters seems to end without any kind of resolution as though they had both been exhausted by the discussion. What I think is left unthought in their views is that the only way we could access reality is through science, and thus if we cannot, then we cannot access reality. To me the discussion of observable and unobservable phenomena is a red herring. Nothing has meaning unless it has meaning for us and that is true of both observable and unobservable phenomena, but the real issue is whether our reality is first of all something that we observe. Here I would turn to the philosophy of Heidegger, who would argue that it is prejudice of a very old metaphysics that our first relation to the world is one of perception, what he calls ‘present-to-hand’. What is true both for the realist and the anti-realist is that they take reality to mean ‘present to hand’. It is just that one thinks scientific theories are speaking about something present to hand and the other does not. The world for Heidegger, on the contrary is not something, present to hand, but ready to hand. The world is first of all something that we orientate ourselves in, rather than perceive.[3] This context can never be investigated as an object, because it is what objects make possible. Even science itself must have its origin in this cultural context or background. It is only because science as an activity means something to us that we can approach anything in the world as a scientific object, and not the other way around.

As Heidegger argues in Being and Time, Newton’s laws are only true because we exist. If we were no longer to exist, and the world in which these laws made sense were no longer to exist, then it would be absurd to still say that these laws were true. This does not mean that things do not exist separate from us, nor that truth is relative. Newton’s laws really say something about things, because these things only are, in the sense of ‘true’, through our existence. This truth would only be relative if we really thought that there was a truth of things beyond our existence that we did not know. Things are only because they are there for us, but this in no way means that any assertion is possible. This would be to confuse assertion and the condition of assertion. The truth of reality is dependent on our existence, but this does not mean that you or I can say anything we like about this existence. For you or I as individuals are just as much part of this existence as anything else is. To be a scientist is to already accept what this existence means (what the world of science means, of which Newton’s laws are an example), and to refuse this is no longer to be a scientist.

Works Cited

Van Fraassen, B. (2006). Weyl’s Paradox: The Distance between Structure and Perspective. In A. Berg-Hildebrand, & C. Shum (Eds.), Bas C. Van Fraassen: The Fortunes of Empiricism (pp. 13-34). Frankfurt: Ontos Verlag.


[1] It is a wholly other topic whether religion is the only discourse that can do this, but that does not undermine our distinction between it and science.

[2] Okasha, Samir, ‘Realism and Anti-Realism’ in Philosophy of Science: A Very Short Introduction, Oxford: OUP, 2002, 58-76. A. F. Chalmers, ‘Realism and Anti-Realism’ in What is this Thing Called Science?, third edition, Maidenhead: Open University Press, 1999, 226-46. Ladyman is more willing to discuss the philosophical issues in depth, but he does so from an analytic perspective. What is lacking in all these treatments is what I would call ‘ontological depth’, and I am going to turn to this in the next lecture which will look at some of the ideas of Heidegger.

[3] I think that this is what Fraassen is getting at when he says that a theory or model of reality is only useful when we locate ourselves within it, though I don’t think he is referring to Heidegger’s distinction here. (Van Fraassen, 2006, p. 31)